Java Singletons don’t exist.

*** Posted on All rights reserved ***

When I first started in my current project I set down to a code review with the lead programmer to see “my” project. At some point during the review, the man pointed to a certain class that was being used as part of the startup sequence for the application and said “this should be reimplemented as a singelton”. Up until then I was following him closely, but that statement took me by surprise, because as far as I knew, singletons don’t exist in Java.

To understand why, we have to look at the definition of a Singelton:

A singleton is a pattern that permits exactly one object that is needed to coordinate actions across the system.

In other words, whereever I am, if I try to use a class that is defined as a singleton, I would always, always, get the SAME object.  Usually, a native implementation of a Singleton looks something like this:

public final class MySingleton{

private MySingelton me=null;

private MySingleton(){
   ...instantiation code here...

public Mysingelton getInstance(){
  if (null==me) me = new MySingelton();
  return me;


As you can see, MySingleton has no public contractors. It can’t be directly instantiated or inherited. You can only get a MySingleton Object by calling getInstance(), which always returns the same object. This makes the singleton very handy for coordinating actions across a system. System states, for example, can be saved as singletons, as can factories, shared queues (a synchronized singleton), thread states, etc. Everywhere in the system that you can the singleton’s name, you’re guarantied to have the exact same object returned to you.

So why are there no Java singletons? Clearly the code above is written in Java and would run in Java, and would function as expected in a Java program. The reason this is not a singleton is the last part of the singleton definition “across the system”.

Consider: In C++, I can use code very much like the one above to tell me if a program has been launched. On the first time that the program runs, it asks for the singleton object, gets it (after it has been allocated by the system) and modifies it to indicate that it had been launched. If the program is then launched again, the second instance of the program would request and get the SAME singleton, see that the “running” state has already been set, and exit. The singleton is used across the system in coordinate states.

In Java, on the other hand, every program instance would run in its own instance of the JVM. This means that when the second instance of the program is launched, it would NOT get the same object as the first instance, but rather it would get the instance that has just been instantiated in its own JVM. The code above can coordinate across the same JVM, but it fails to coordinate across the system. Therefore, it does not qualify as a true singleton.

This may seem like splitting hairs, but it’s a very important thing to know. The guy I set with in the code review was pointing at a class who’s job was to make sure only one instance of the application would ever launch. We work on a project that does network measurements and topographies. It sends out packets with different addresses and TTLs and uses the returns to map the Internet. If we have two instances of the application running at the same time, we may not know which packet was sent by which instance, and our results would be compromised. Furthermore: We allow our users to run the application as a service, or as a standalone GUI based program. If we don’t have mutual exclusion, we can run into a situation where a user had installed the service AND the GUI, and starts both, thinking that the GUI just reflects the service. This could very easily lead to corruption in our data, and problems in the whole research.  All because Java singletons aren’t really singletons.

The good news is that in 95% of the cases, the code above would work quite nicely as a singleton. So long as you are staying within the JVM, it’s fine. For the last 5%, there are workarounds that can make mutual exclusion possible in Java. I will post about that some other time, though.

Good Coding,



Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: